Persistent Homology of Finite Topological Spaces
نویسنده
چکیده
We introduce homology and finite topological spaces. From the basis of that introduction, persistent homology is applied to finite spaces. We prove an equivalence between persistent homology and normal homology in the context of finite topological spaces and introduce an extended pseudometric on finite topological spaces, using the results of Minian.
منابع مشابه
P-persistent homology of finite topological spaces
Let P be a finite partially ordered set, briefly a finite poset. We will show that for any P -persistent object X in the category of finite topological spaces, there is a P− weighted graph, whose clique complex has the same P -persistent homology as X.
متن کاملCat 2015 Topological Data Analysis: New Developments and Challenges
s _______________________________________________________________________________________ Ulrich Bauer Title:Induced Matchings and the Algebraic Stability of persistence Barcode Abstract: We define a simple, explicit map sending a morphism f : M → N of pointwise finite dimensional persistence modules to a matching between the barcodes of M and N. Our main result is that, in a precise sense, the...
متن کاملPersistent homology for metric measure spaces, and robust statistics for hypothesis testing and confidence intervals
We study distributions of persistent homology barcodes associated to taking subsamples of a fixed size from metric measure spaces. We show that such distributions provide robust invariants of metric measure spaces, and illustrate their use in hypothesis testing and providing confidence intervals for topological data analysis.
متن کاملRobust Statistics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces
We study distributions of persistent homology barcodes associated to taking subsamples of a fixed size from metric measure spaces. We show that such distributions provide robust invariants of metric measure spaces, and illustrate their use in hypothesis testing and providing confidence intervals for topological data analysis.
متن کاملSome aspects of cosheaves on diffeological spaces
We define a notion of cosheaves on diffeological spaces by cosheaves on the site of plots. This provides a framework to describe diffeological objects such as internal tangent bundles, the Poincar'{e} groupoids, and furthermore, homology theories such as cubic homology in diffeology by the language of cosheaves. We show that every cosheaf on a diffeological space induces a cosheaf in terms of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010